Concept: The classes \mathcal{P} and \mathcal{NP}

1. A problem can be in \mathcal{P} and not in \mathcal{NP}.
 (A) True
 (B) Not known
 (C) False

2. A problem can be in \mathcal{NP} and not in \mathcal{P}.
 (A) True
 (B) Not known
 (C) False

3. All problems are in \mathcal{P}.
 (A) Not known
 (B) False
 (C) True

4. All problems are in \mathcal{NP}.
 (A) True
 (B) Not known
 (C) False

5. \mathcal{NP} stands for:
 (A) Non-intractable Program.
 (B) Non-deterministic Polynomial.
 (C) Non-Polynomial.
 (D) Non-exponential Program.

6. T or F: A constant time algorithm is in \mathcal{P}.

7. T or F: A linear time algorithm is in \mathcal{P}.

8. T or F: A constant time algorithm is in \mathcal{NP}.

9. T or F: A linear time algorithm is in \mathcal{NP}.

10. Someone shows you a correct algorithm for problem A whose solution can be verified in polynomial time. You can conclude:
 (A) problem A is in \mathcal{NP}
 (B) nothing about whether problem A is in \mathcal{NP} or not.
 (C) problem A is not in \mathcal{NP}

11. Someone proves that for a correct algorithm for problem A, solutions must be verified in at least exponential time. You can conclude:
 (A) nothing about whether problem A is in \mathcal{NP} or not.
 (B) problem A is in \mathcal{NP}
 (C) problem A is not in \mathcal{NP}

12. Someone shows you a correct polynomial time algorithm for problem A. You can conclude:
 (A) problem A is not in \mathcal{P}
 (B) nothing about whether problem A is in \mathcal{P} or not.
 (C) problem A is in \mathcal{P}
13. Someone shows you a correct exponential time algorithm for problem A whose solution can be verified in polynomial time. You can conclude:

(A) problem A is in \(\mathcal{P} \)
(B) problem A is not in \(\mathcal{P} \)
(C) nothing about whether problem A is in \(\mathcal{P} \) or not.

14. Someone shows you a correct polynomial time algorithm for problem A. You can conclude:

(A) nothing about whether problem A is in \(\mathcal{NP} \) or not.
(B) problem A is not in \(\mathcal{NP} \)
(C) problem A is in \(\mathcal{NP} \)

15. Which one of the following is not a valid way to prove a problem is in \(\mathcal{NP} \):

(A) show that a solution can be found in polynomial time on a deterministic computer.
(B) show that a solution can be verified in polynomial time on a non-deterministic computer.
(C) show that a solution can be found in polynomial time on a non-deterministic computer.
(D) show that a solution can be verified in polynomial time on a deterministic computer.

Concept: \(\mathcal{NP} \)-completeness

16. To show that a problem A is \(\mathcal{NP} \)-complete, one task is to:

(A) show A is not in \(\mathcal{P} \).
(B) show A is in \(\mathcal{NP} \).
(C) show A is not in \(\mathcal{NP} \).
(D) show A is in \(\mathcal{P} \).

17. Suppose B is an \(\mathcal{NP} \)-complete problem. To show that a problem A is \(\mathcal{NP} \)-complete, one task could be:

(A) show a polynomial time/space reduction from B to A.
(B) show an exponential time/space reduction from B to A.
(C) show a polynomial time/space reduction from A to B.
(D) show an exponential time/space reduction from B to A.

18. Another way of stating “a reduction from A to B” is:

(A) solve A-type problems with an algorithm for B
(B) convert an algorithm for A to an algorithm for B
(C) convert an algorithm for B to an algorithm for A
(D) solve B-type problems with an algorithm for A

Concept: If \(\mathcal{P} = \mathcal{NP} ? \)

19. If \(\mathcal{P} = \mathcal{NP} \), then all problems in \(\mathcal{P} \) are in \(\mathcal{NP} \).

(A) False
(B) Not known
(C) True

20. If \(\mathcal{P} = \mathcal{NP} \), then all problems in \(\mathcal{NP} \) are in \(\mathcal{P} \).

(A) False
(B) True
(C) Not known

21. If \(\mathcal{P} \neq \mathcal{NP} \), then there exist problems in \(\mathcal{P} \) that are not in \(\mathcal{NP} \).

(A) True
(B) False
(C) Not known

22. If \(\mathcal{P} \neq \mathcal{NP} \), then there exist problems in \(\mathcal{NP} \) that are not in \(\mathcal{P} \).

(A) Not known
(B) True
(C) False
Concept: Proving $\mathcal{P} = \mathcal{NP}$.

23. *Factoring* is in \mathcal{NP}. Currently, the best known algorithm on a conventional computer takes exponential time. If *factoring* is proved to take at least exponential time, what is the effect on the question $\mathcal{P} = \mathcal{NP}$?

 (A) the question is still unanswered
 (B) $\mathcal{P} = \mathcal{NP}$
 (C) $\mathcal{P} \neq \mathcal{NP}$

24. *Factoring* is in \mathcal{NP}. Currently, the best known algorithm on a conventional computer takes exponential time. If *factoring* is shown to take polynomial time, what is the effect on the question $\mathcal{P} = \mathcal{NP}$?

 (A) $\mathcal{P} \neq \mathcal{NP}$
 (B) $\mathcal{P} = \mathcal{NP}$
 (C) the question is still unanswered

25. *Factoring* is in \mathcal{NP} and the best known algorithm takes exponential time. In the past, a linear time algorithm was discovered for quantum computers. What is the effect on the question $\mathcal{P} = \mathcal{NP}$?

 (A) $\mathcal{P} = \mathcal{NP}$? is still unanswered.
 (B) $\mathcal{P} = \mathcal{NP}$, but just for quantum computers
 (C) $\mathcal{P} = \mathcal{NP}$ for all types of computers.

26. *Subset Sum* is \mathcal{NP}-complete. Currently, the best known algorithm on a conventional computer takes exponential time. If *Subset Sum* is proved to take at least exponential time, what is the effect on the question $\mathcal{P} = \mathcal{NP}$?

 (A) $\mathcal{P} \neq \mathcal{NP}$
 (B) the question is still unanswered
 (C) $\mathcal{P} = \mathcal{NP}$

27. *Subset Sum* is \mathcal{NP}-complete. Currently, the best known algorithm on a conventional computer takes exponential time. If solving *Subset Sum* can be shown to take polynomial time, what is the effect on the question $\mathcal{P} = \mathcal{NP}$?

 (A) the question is still unanswered
 (B) $\mathcal{P} = \mathcal{NP}$
 (C) $\mathcal{P} \neq \mathcal{NP}$

28. In the past, it was shown how to solve Hamiltonian Path (an \mathcal{NP}-complete problem) in linear time, using a DNA-based computer. However, the algorithm takes a factorial number of DNA strands, which need to be created each time. This means:

 (A) $\mathcal{P} \neq \mathcal{NP}$ for all types of computers.
 (B) $\mathcal{P} \neq \mathcal{NP}$? is still unanswered.
 (C) $\mathcal{P} = \mathcal{NP}$, but just for DNA-based computers

29. **T** or **F**: $\mathcal{P} = \mathcal{NP}$ is just another way of saying, for problems in \mathcal{NP}, finding a solution is no harder than verifying a solution.