Rough ideas

Consider this Venn diagram:

We can assign the following meanings:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega)</td>
<td>always worse than lower bound</td>
<td>NSL, WCB</td>
</tr>
<tr>
<td>(o)</td>
<td>always better than upper bound</td>
<td></td>
</tr>
<tr>
<td>(\Omega)</td>
<td>never better than lower bound</td>
<td>NSL, WCB</td>
</tr>
<tr>
<td>(O)</td>
<td>never worse than upper bound</td>
<td>NSL, WCB, ICF</td>
</tr>
<tr>
<td>(\Theta)</td>
<td>never better/worse than upper and lower (tight) bound</td>
<td>NSL, WCB, ICF</td>
</tr>
</tbody>
</table>

under the following conditions:

- the problem size (usually denoted \(n \)) is sufficiently large (NSL)
- we are comparing worst case behavior (WCB)

For the \(\Theta \), \(\Omega \), and \(O \) regions, we apply one more condition:

- we ignore constant factors and other lower order terms (ICF)

If we are comparing the running times of two algorithms, \(f \) and \(g \), we place one of them, say \(g \), in the \(\Theta \) region. If algorithm \(f \) is in the \(\omega \) region, then:

\[f = \omega(g) \]

The English interpretation is that \(f \) is always slower than \(g \) (NSL, WCB). If \(f \) is in the \(\Theta \) or \(o \) regions, then:

\[f = O(g) \]

The English interpretation of this statement is that \(f \) is never slower than \(g \) (NSL, WCB, ICF).

When using order notation, one generally assumes that NSL, WCB, and ICF always apply, unless otherwise stated.

Formal Statements

A formal definition of \(O \) is:
if $\lim_{n \to \infty} \frac{f}{g} = 0$

The definitions of the other symbols are similar.