Let \(n \) be the count of numbers in a collection of base10 numbers. Suppose zero is the minimum number and \(k \) is the maximum number in the collection. The time complexity of counting sort is...

This is off the top of my head...

You have to process the array of \(n \) numbers, so that takes \(\Theta(n) \) time. Then you have to process the counts array, which takes \(\Theta(k) \) time. The overall time depends on which is bigger, \(n \) or \(k \).

Thank you!