Are you sure that this actually converges on a recognizable number? Because that continued fraction is close to some continued fraction which would converge to a famous number named after some famous mathematician from antiquity, but it's not.

The number is a little less recognizable than (but related to) the number you are talking about.

Alright thanks for the hint.

Has anyone actually figured this out?

Mine converges to Ponies!

Are you getting the same thing, padietl?

That's what I'm getting, which is related to the aforementioned number
Subject: Re: Problem 9
Posted by padietl on Tue, 13 Sep 2016 02:47:54 GMT

How is it less than 2 if the augend is 2?

Subject: Re: Problem 9
Posted by eadwyer on Tue, 13 Sep 2016 02:52:15 GMT

I believe the continued fraction we are supposed to evaluate to infinity is [1; 1,1,1, 5,1,1, 9,1,1, 13,1,1, ...], not (mystery 3 2 (lambda (n) 1) (lambda (n) n)) ? (I was confused on this too)

Subject: Re: Problem 9
Posted by eadwyer on Tue, 13 Sep 2016 02:53:25 GMT

^ ignore winky face omg

Subject: Re: Problem 9
Posted by padietl on Tue, 13 Sep 2016 03:14:28 GMT

Ughhhhhh this has been my problem the entire time!!!

Subject: Re: Problem 9
Posted by apluth on Tue, 13 Sep 2016 20:19:05 GMT

i'm confused what exacly are we evaluating, if mystery is the call to the function we write then how do we get all of the augends and shouldnt the second function parameter be a recursive call to the denominator?

Subject: Re: Problem 9
Posted by lusl on Tue, 13 Sep 2016 21:49:37 GMT

First, you are to implement the mystery function both recursively and iteratively.
Second, you are to come up with numerator and denominator functions and send them to your mystery function in order to identify the continued fraction \[1;1,1,5,1,1,9,1,1,13,1,1...\]

Subject: Re: Problem 9
Posted by jwlichtle on Tue, 13 Sep 2016 22:42:04 GMT

View Forum Message <> Reply to Message

In the problem description, it states that mystery should implement an iterative process. It doesn’t mention doing a second that uses a recursive process. Would you like us to do that?

Subject: Re: Problem 9
Posted by padietl on Tue, 13 Sep 2016 22:56:44 GMT

View Forum Message <> Reply to Message

no, just an iterative processssssssssssss, bro.

Subject: Re: Problem 9
Posted by lusth on Wed, 14 Sep 2016 00:26:39 GMT

View Forum Message <> Reply to Message

padietl is correct. Just iterative. I confused #9 with #10.