Are you sure that this actually converges on a recognizable number? Because that continued fraction is close to some continued fraction which would converge to a famous number named after some famous mathematician from antiquity, but it’s not.

The number is a little less recognizable than (but related to) the number you are talking about.

Alright thanks for the hint.

Has anyone actually figured this out?

Mine converges to Ponies!

Are you getting the same thing, padietl?

That’s what I’m getting, which is related to the aforementioned number.
How is it less than 2 if the augend is 2?

I believe the continued fraction we are supposed to evaluate to infinity is \([1; 1,1,1,5,1,1,9,1,1,13,1,1, ...]\), not (mystery 3 2 (lambda (n) 1) (lambda (n) n)) ? (I was confused on this too)

^ ignore winky face omg

Ughhhhhh this has been my problem the entire time!!!

i'm confused what exactly are we evaluating, if mystery is the call to the function we write then how do we get all of the augends and shouldn't the second function parameter be a recursive call to the denominator?

First, you are to implement the mystery function both recursively and iteratively.
Second, you are to come up with numerator and denominator functions and send them to your mystery function in order to identify the continued fraction $[1;1,1,5,1,9,1,1,13,1,1,...]$

Subject: Re: Problem 9
Posted by jwlichtle on Tue, 13 Sep 2016 22:42:04 GMT

In the problem description, it states that mystery should implement an iterative process. It doesn’t mention doing a second that uses a recursive process. Would you like us to do that?

Subject: Re: Problem 9
Posted by padietl on Tue, 13 Sep 2016 22:56:44 GMT

no, just an iterative processssssssssssssssssssssssss, bro.

Subject: Re: Problem 9
Posted by lusth on Wed, 14 Sep 2016 00:26:39 GMT

padietl is correct. Just iterative. I confused #9 with #10.