Here are my implementations of adjoin, union, and intersection:

(define (adjoin x s) (cons x s)) The adjoin function is clearly constant.

(define (union s t)
 (define (iter result a b)
 (cond
 ; set a is done, now work on set b
 (not (member? (car a) result))
 (else
 (iter result (cdr a) b))
)
)
 (iter nil s t)
) Since the resulting set has no duplicates, scanning the result takes \(\theta(n) \) time. We do this for \(\theta(n^2) \) items in the sets \(a \) and \(b \) (\(n \) unique elements, each having \(O(n) \) duplicates). So, overall, we have \(\theta(n^3) \).

(define (intersection s t)
 (define (iter result a b)
 (cond
 (null? a) result
 ; if not already in the resulting set
 (iter result (cdr a) b)
)
)
 (iter nil s t)
) Intersection takes quartic time, since each of the \(\theta(n^2) \) elements in \(a \) requires a scan of the \(\theta(n^2) \) elements in \(b \).

However, for intersection, I can do better. I could remove the duplicates in both sets by unioning each with the empty set. Then I could run intersection. That would be \(\theta(n^3) \) for the unioning and an additional \(\theta(n^2) \) for the intersection, yielding an overall time of \(\theta(n^3) \).