Question 51 states the following:

What is the time complexity of this function? Assume the initial value of i is one and j is zero.

```java
function f(i,j,n)
    {  
        if (i < n)
            {  
                if (j < n)
                    f(i,j+1,n);
                else
                    f(i*2,0,n);
            }
        println(i,j);
    }

I've boiled the question down to be either n*log(n) or n*sqrt(n). I am unsure how i*2 would result in, but I feel it would result in a sqrt(n) amount of runtime.

What would make code result in log(n) and what would make it result in sqrt(n)?

---

Subject: Re: log(n) vs sqrt(n), and question 51 (and 52)
Posted by Witherspoon on Tue, 24 Jan 2017 02:54:59 GMT

When I was working through this problem I came to the conclusion that it would run in n*log(n) with a base of 2. Please correct me if I am incorrect though.

---

Subject: Re: log(n) vs sqrt(n), and question 51 (and 52)
Posted by jarobinson3 on Tue, 24 Jan 2017 04:22:36 GMT

When I look at this problem I see two loops, one inside the other

```java
for(i = 1; i < n; i *= 2) {
 for(j = 0; j < n; j++) {
 /* print correctly */
 }
}
Subject: Re: log(n) vs sqrt(n), and question 51 (and 52)
Posted by sbcarp on Tue, 24 Jan 2017 06:30:36 GMT

Testing Result:

\begin{align*}
n & : 100 \\
\log(n) & : 6.643856 \\
n \log(n) & : 664.385619 \\
n^2 & : 10000 \\
n^n & : 9999999999999969733122212510361659474503275455023626482417 \\
& \quad 50950346848355540755341963384047062518680275124159738824081 \\
& \quad 82135734368278484639385410472398778710235910667899818111818 \\
& \quad 13306167128854888448.000000 \\
\end{align*}

Total time: 708 (Matches \(n \log(n)\))

Subject: Re: log(n) vs sqrt(n), and question 51 (and 52)
Posted by sbcarp on Tue, 24 Jan 2017 06:33:07 GMT

\begin{align*}
100 \sqrt{100} & = 1000 \\
\end{align*}