This thread is part of the proposed schedule for study for the first exam. Discuss the practice problems here.

View questions here: http://beastie.cs.ua.edu/concepts/cs/al/heaps.html

This thread covers questions 16-28 of heaps.

Work together on the proposed answers to questions on this shared Google Doc (comment reasoning/arguments behind answers)

Upcoming topics (threads start two days in advance): Graphs 1-15, Feb 15 | Graphs 16-28, Feb 16 | SB trees 26-52, Feb 17 | Recurrences 71-105, Feb 18

Full schedule

I feel like both of these should be linear, because there’s no way to go about finding which subheap a value should be in quickly (unless keeping track of pointers to nodes).

That seems like a reasonable argument.

lusth wrote on Tue, 14 February 2017 07:51

That seems like a reasonable argument.

Why is it not \(\log(n) \) time? The decreaseKey function takes \(\log(n) \) time and involves finding the node to decrease.

EDIT: Figured it out; decreaseKey assumes you have a pointer to the node already.
Quote: Consider this set of operations: 15 inserts and one extraction of the minimum (in any order). What is the fewest / most number of subheaps found after the set is performed on an initially empty fibonacci heap?

I can't think of any cases where there is anything but 3 subheaps after consolidation.

Subject: Re: Concept Review: Heaps (Part 2)
Posted by cewrobel on Tue, 21 Feb 2017 01:54:49 GMT
View Forum Message <> Reply to Message

Did Dr. Lusth say priority queues would be on the exam?

Subject: Re: Concept Review: Heaps (Part 2)
Posted by lusth on Tue, 21 Feb 2017 13:12:15 GMT
View Forum Message <> Reply to Message

Good priority queues are just heaps. Bad ones are linked-lists.