Subject: Last Semester's Final Shared Practice Document
Posted by davidmccoy on Mon, 24 Apr 2017 16:00:37 GMT
View Forum Message <> Reply to Message

To prepare for the final, here's a shared document to contribute to and view from last semester's final: https://docs.google.com/document/d/1PbCgnDaTOZKEM6y7OwhVBUobXBv7Lzdnj6D374P8ZQU/edit?usp=sharing

Subject: Re: Last Semester's Final Shared Practice Document
Posted by jarobinson3 on Tue, 25 Apr 2017 16:12:42 GMT
View Forum Message <> Reply to Message

So close...

Subject: Re: Last Semester's Final Shared Practice Document
Posted by SSinischo on Tue, 25 Apr 2017 23:26:44 GMT
View Forum Message <> Reply to Message

jarobinson3 wrote on Tue, 25 April 2017 11:12 So close...

I don't get it

Subject: Re: Last Semester's Final Shared Practice Document
Posted by jarobinson3 on Wed, 26 Apr 2017 13:50:54 GMT
View Forum Message <> Reply to Message

Nothing exciting, just so close to cooler words.

Subject: Re: Last Semester's Final Shared Practice Document
Posted by SSinischo on Wed, 26 Apr 2017 15:19:46 GMT
View Forum Message <> Reply to Message

jarobinson3 wrote on Wed, 26 April 2017 08:50 Nothing exciting, just so close to cooler words.

OWL? OWN? TOWER? SNOWBLOWER?
I think the answer for number 2, which currently does not have an answer, is that the Master Recurrence Theorem cannot be used. I didn't want to add to the document since I have an absolute terrible track record with MRT problems, but did anyone else get the same answer?

I believe there is a non-polynomial difference between $\frac{n}{\log n}$ and $n^{(\log_2 2)}$.

Rjharter wrote on Wed, 26 April 2017 12:40 I think the answer for number 2, which currently does not have an answer, is that the Master Recurrence Theorem cannot be used. I didn't want to add to the document since I have an absolute terrible track record with MRT problems, but did anyone else get the same answer?

I believe there is a non-polynomial difference between $\frac{n}{\log n}$ and $n^{(\log_2 2)}$.

Pretty sure this is correct. The ratio $\frac{n/\log(n)}{n}$ does not grow to infinity.