Combining Functions

Key idea
building functions with functions (as opposed to calling functions from functions)

Combination of functions
Most procedural languages allow for the combination of data. For example, Pascal has records, C has structs, and C++ has classes. Since functions are first class objects in Scheme, they also can be combined much like data. Consider the function \(f(x) = x^3 - 2x^2 + 1 \). We can easily represent that function in Scheme.

\[
\text{(define (f x)} \\
\quad (+ (* 1 x x x) (* -2 x x) 1) \\
\text{)}
\]

Note the new notation for + and *. We normally think of these operators as binary, but in Scheme they are multi-ary or variadic. Now suppose we wish to calculate the derivative of this function at a point. Numerically, we can shift right a tiny amount and evaluate the function at this new point as well as the original point. Then the value of the derivative at the original point is roughly equal to \(\frac{f(x+\Delta) - f(x)}{\Delta} \), where \(\Delta \) is the amount of the shift. Using this equation, we can naturally define a Scheme function:

\[
\text{(define (derivative f point delta)} \\
\quad (/ \text{(- (f (+ point delta)) (f point)) delta)} \\
\text{)}
\]

We would call our general purpose function thusly:

\[
\text{(derivative f 5 .00001)}
\]

However, our natural inclinations are wrong in this case because of our procedural upbringing. The proper approach is to create a new function out of old functions. Consider a rewrite which returns the function that computes the derivative:

\[
\text{(define (deriv f delta)} \\
\quad \text{(lambda (x) (/ (- (f (+ x delta)) (f x)) delta)))} \\
\text{)}
\]

Now we can bind this new function to a name:

\[
\text{(define fprime (deriv f .00001)}
\]

and use it:

\[
\text{(fprime 6)}
\]
to compute the slope of \(f \) at \(x = 6 \).

The function \(fprime \) is a function which is built from a simpler function. The analogy in C++ and Java (using data) is a more complex class has been built from a simpler class. The first attempt, \(\text{derivative} \), uses the passed function as a client (analogous to composition in C++ and Java) while the second version, \(\text{deriv} \), returns a function that is literally built on the passed function (analogous to inheritance in C++ and Java). Now consider writing a function that finds the second derivative. Using a procedural style, we are forced to write

\[
\text{(define (derivative2 f point delta)} \\
\quad \text{(-)} \\
\quad \text{(derivative f (+ point delta) delta)} \\
\quad \text{(derivative f point delta)} \\
\quad \text{)} \\
\quad \text{delta) \\
\quad \)} \\
\]

The function \(fprime \) is a function which is built from a simpler function. The analogy in C++ and Java (using data) is a more complex class has been built from a simpler class. The first attempt, \(\text{derivative} \), uses the passed function as a client (analogous to composition in C++ and Java) while the second version, \(\text{deriv} \), returns a function that is literally built on the passed function (analogous to inheritance in C++ and Java). Now consider writing a function that finds the second derivative. Using a procedural style, we are forced to write
Note how similar the body of \textit{derivative2} is to \textit{derivative}. Using a functional approach, we do not need to write \textit{derivative2} at all; \textit{deriv} suffices:

\begin{verbatim}
 (define fp (deriv f .00001))
 (define fpp (deriv fp .00001))
\end{verbatim}

Scheme allows us to treat the derivative of a function as it really is, a function. In the procedural example, we treat the derivative as a single point.