Fun with grammars

Here are a set of abstract languages and grammars which can generate them.

Set of all strings over A,B ending in A

\[
\begin{align*}
 s & : zA \\
 z & : Az \mid Bz \mid \text{empty}
\end{align*}
\]

Note that the non-terminal \(z \) generates all strings composed of A's and B's. The non-terminal \(s \) simply appends all strings generated by \(z \) with an \(A \) to give the desired result.

Set of all strings over A,B beginning and ending in A

\[
\begin{align*}
 s & : AzA \mid A \\
 z & : Az \mid Bz \mid \text{empty*}
\end{align*}
\]

Here, \(z \) plays the same role as before. In this case, \(s \) simply prepends an \(A \) as well to give the desired result.

Set of all strings over A,B with three consecutive A’s

\[
\begin{align*}
 s & : zAAAz \\
 z & : Az \mid Bz \mid \text{empty*}
\end{align*}
\]

Now, \(s \) places a \(z \) at both ends to ensure that there are three consecutive A’s somewhere in the sentence.

Set of all strings over A,B such that there is a pair of A’s separated by \(4i \), \(i \geq 0 \), characters

\[
\begin{align*}
 s & : zAlAz \\
 z & : Az \mid Bz \mid \text{empty*} \\
 l & : fl \mid \text{empty*} \\
 f & : Ag \mid Bg \\
 g & : Ah \mid Bh \\
 h & : Ai \mid Bi \\
 i & : A \mid B
\end{align*}
\]

Similar to before, but note that \(l \) generates zero or more \(f \) strings. Note that an \(i \) string is composed of a single character. Therefore, an \(h \) string is composed of two characters, a \(g \) string is composed of three characters and and \(f \) string is composed of four characters. Since there are zero or more \(f \) strings between the two \(A \)'s in an \(s \) string, we get the desired language.

Set of all strings over A,B such that at no two A’s and no two B’s are adjacent

\[
\begin{align*}
 s & : a \mid b \\
 b & : Ba \mid \text{empty*} \\
 a & : Ab \mid \text{empty*}
\end{align*}
\]

The non-terminals \(a \) and \(b \) flip flop back and forth to ensure no two like characters are adjacent.

Palindromes over A,B

\[
\begin{align*}
 s & : A \mid B \mid AsA \mid BsB \mid \text{empty*}
\end{align*}
\]

If we place an \(A \) in the front, we must place one in the back. Likewise for \(B \)'s.

Balanced parentheses

\[
\begin{align*}
 s & : (s) \mid ss \mid \text{empty*}
\end{align*}
\]

or

\[
\begin{align*}
 s & : (s)s \mid \text{empty*}
\end{align*}
\]

It is a temptation to define \(s \) as \((s)\). This disallows such balanced strings as \((()())\).
Set of a strings over A,B so that the number of As equals the number of B's

$s : Ab \mid Ba \mid \text{empty}$
$a : As \mid Baa$
$b : Bs \mid Abb$

Note that b stands for strings with 1 more B than A and a stands for strings with 1 more A than B. These non-terminals arise naturally out of the observation that the strings must start with an A or B and the consequences of that starting character on the remainder of the string.